

http://idealvis.inspirecenter.org/
1

1

D19 (SOFTWARE)
SOFTWARE

DEVELOPMENT OF
KNOWLEDGEBASE

http://idealvis.inspirecenter.org/

IDEALVis Consortium

http://idealvis.inspirecenter.org/
2

2

Executive Summary

This deliverable provides an overview of the KnowledgeBase, which is one of the fundamental
layers that make up the IDEALVis platform architecture. The KnowledgeBase serves as a
centralized repository that holds various types of data (i.e., generated information, information
models, monitoring data and analytic algorithms) and further communicates those with various
cooperating services e.g., Adaptation Engine. More specifically, this deliverable provides an
overview of the KnowledgeBase by (i) providing an in-depth view of the platform’s underlying
database, and (ii) by presenting the architecture and design of (a) the Data Service which enables
data querying, manipulation i.e., filtering and aggregation for transforming low-level data to high
quality information; and (b) the Analytics Service which further transforms queried data using
analytical algorithms into reports that can be visualized.

http://idealvis.inspirecenter.org/
3

3

Table of Contents

EXECUTIVE SUMMARY .. 2

LIST OF FIGURES .. 4

1 Introduction ... 5

1.1 Deliverable Scope ... 5

1.2 Deliverable Structure ... 5

2 System Database .. 6

2.1 Database Tables ... 8

2.2 Analysis Datasets ... 9

3 Data Service ... 10

3.1 Dataset XML Descriptors .. 10

3.2 JSON Query Specification ... 11

4 Analytics Service .. 14

4.1 Analysis Definition ... 14

4.2 Rendering Analysis Reports ... 16

5 Conclusions .. 18

http://idealvis.inspirecenter.org/
4

4

List of Figures

Figure 1 - IDEALVis Database Design ... 7

Figure 2 – Example Sales Dataset Descriptor File .. 10

Figure 3 - Analysis Wizard - Selecting Attributes ... 11

Figure 4 - Analysis Wizard - Setting Filters ... 11

Figure 5 - Example JSON Query Specification .. 12

Figure 6 - Example Realized SQL Query ... 13

Figure 7 - Analysis Wizard – Selecting Analysis .. 14

Figure 8 - Implemented Analysis Methods .. 15

Figure 9 - Overall Analysis Request Data Flow ... 17

http://idealvis.inspirecenter.org/
5

5

1 Introduction
1.1 Deliverable Scope

This deliverable will focus on providing the architecture and the design of the KnowledgeBase
layer found at the core of the IDEALVis platform. We will use references to code, XML/JSON
configuration files and present visual diagrams (e.g., database diagrams) to illustrate the inner
operations and structure of the various components (i.e., Database, Data Service and Analytics
Service) under the layer of interest. The architecture and design principles applied during the
development of the KnowledgeBase ensure that each component has high modularity and
maintainability, while the same time preserving the lowest possible coupling between software
components (i.e., changes and extensibility are feasible).

1.2 Deliverable Structure

The reset of the deliverable is structured as follows:

• Section 2 provides an overview of the system’s database.

• Section 3 introduces the Data Service and describes the inner operations that allow for

dataset querying.

• Section 4 introduces the Analytics Service and demonstrates how it consumes query

results to produce analysis reports.

• Section 5 concludes the deliverable.

http://idealvis.inspirecenter.org/
6

6

2 System Database
The project’s knowledge base is built using Microsoft’s SQL Server1 database server and data
management operations are performed using Transact SQL2. The platform was developed using
ASP.NET Web APIs3 and Entity Framework Core4, an open-source and cross-platform object-
relational mapper (O/RM), which enables us (using database migrations5) to interact and build the
database by defining .NET objects in the C# language.
The current knowledgebase design is illustrated by the diagram in Figure 1, depicting only the
most prominent tables of the database and their relationships. The design is user centric, allowing
all interactions to be performed through the users table (AspNetUsers). Note that some tables
presented to the left of the diagram in Figure 1 do not establish relationships with other tables. In
the next sub-section, we provide a short description for each database table to further facilitate
the readers understanding of the schema in Figure 1.

1 https://www.microsoft.com/en-cy/sql-server/sql-server-downloads
2 https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-ver15
3 https://dotnet.microsoft.com/apps/aspnet/apis
4 https://docs.microsoft.com/en-us/ef/core/
5 https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-cli

http://idealvis.inspirecenter.org/
7

7

Figure 1 - IDEALVis Database Design

http://idealvis.inspirecenter.org/
8

8

2.1 KnowledgeBase Tables

• AspNetUsers: Stores user’s information such as profile and authentication information.

• UserRoleMappings: The role for each user is stored in this table.

• UserModels: Stores the user model for each of the users.

• UserGroups: This table maintains the user’s group. A group represents a team within an

organization (i.e., data preparation department). Groups are assigned to organizations (see

below).

• Organizations: This table maintains the user’s organization. An organization has many user

groups.

• WizardUsageInstances: This table is used for storing the user’s interactions when

constructing analyses through the Analysis Wizard Interface (used for analysis tracking and

pattern discovery). Each time a user creates or changes an analysis via the Analysis Wizard,

the resulting analysis configuration and the time taken to perform every step of the

Analysis Wizard are recorded in this table.

• WizardResultViewingInstances: This table is used for storing the user’s view time with any

analysis report (i.e., time spent gazing at a particular Analysis Wizard output). This data is

used for analysis tracking and pattern discovery. Each time a user comes across an analysis

report, this table is populated with a new time record related to a specific

WizardUsageInstance that was used to create that report.

• AnalysisFlows: This table keeps all Analysis Wizard configurations (or analysis flows) that a

user saved for later use.

• DashboardCardEntries: Dashboard cards (i.e., widgets) for every user are stored in this

table. Information for every card regards the card’s placement on the dashboard i.e., size

and positioning. Moreover, a specific DashboardCardEntry is linked to a specific Analysis

Task.

• DashboardCardEntryConfigurations: This table keeps a JSON query specification that

defines the contents (i.e., analysis report) of each dashboard card.

• AnalysisTasks: This table keeps all the tasks that data analysts within an organization must

solve. Tasks are defined by an Executive Data Analyst user.

• AnalysisTasksAnswers: For each analysis task that can be addressed using one of multiple

answers (i.e., multiple choice task), this table keeps all the possible task answers, including

an indicator to the correct answer.

http://idealvis.inspirecenter.org/
9

9

• AnalysisTaskResponses: This table keeps all analysis task responses provided by users for

each task. Moreover, this table marks which tasks are assigned to which users.

• ChartTypeAdaptationRules: All the adaptation engine rules that are used for selecting the

best fit data visualization type.

• ChartElementAdaptationRules: All the adaptation rules that are used for selecting

different visual element adaptations to be applied on the best fit data visualization.

• <EXTERNAL_DATA>: Any data that are used for exploration and analysis purposes are

imported into the database as an external table (e.g., STUDY_3_DATA).

2.2 Analysis Datasets

The Data Service supports both locally stored data (see <EXTERNAL DATA> in the previous section)
or connecting to datasets that are maintained on external to the platform sources/servers. These
datasets are the ones which users explore for addressing the analysis tasks assigned to them.
To support the studies, we opted for the former option (i.e., to include the analysis dataset in the
platform’s database) for ensuring a smoother and seamless pilot study deployment.

http://idealvis.inspirecenter.org/
10

10

3 Data Service Layer
Data retrieval and analysis in IDEALVis is performed using a graphical user interface coined
"Analysis Wizard", which enables a data analyst user to request data for a specific analysis,
without explicitly having to type a query (i.e., code or expressions of a specific query language).
Instead, the Analysis Wizard enables the user to easily construct a database-agnostic JSON query
specification for a given analysis, using buttons and drag and drop functionality. Moreover, the
Analysis Wizard is powered by the Query Engine, which is responsible for three key operations
including: (i) storing and parsing XML files that describe each dataset that the Query
Engine/Analysis Wizard can interact with; (ii) interpreting and transforming the JSON query
specification to valid/realized query language (e.g., Microsoft Transact SQL); and (iii) executing the
realized query on the target dataset, retrieving the results and returning them as a list of
dictionaries i.e., JSON format. The sections below provide the specifications of the XML dataset
descriptors, and further describe the process of transforming a JSON query specification to a
query string.

3.1 Dataset XML Descriptors

The Query Engine is agnostic of how the data are represented (i.e., their schema). Therefore, each
dataset that the platform interacts with needs to be described using a specific XML descriptor file.
For a given dataset, the descriptor file provides information, such as (i) the dataset name, (ii) the
dataset available schema/attributes, their data types and their human-readable name i.e., label,
and (iii) the available attribute hierarchies. An example sales dataset descriptor file can be seen at
Figure 2. More specifically, the descriptor aims to provide all the necessary dataset metadata and
facilitate a mapping between the actual database constructs and the internal Query Engine
representations. This mapping is achieved by the db attribute on the and tdata XML elements as
seen in Figure 2.

Figure 2 – Example Sales Dataset Descriptor File

http://idealvis.inspirecenter.org/
11

11

Given a descriptor XML file, the Query Engine parses it down to a DatasetSpec C# object which is
used for communicating dataset specifics to the front-end (i.e., details about available datasets
and their attributes etc. used to populate information in the Analysis Wizard interface) and for
mapping/transforming the JSON query specification into a proper query language (i.e., given that
the query spec has the mSalesValue measure in the list of selected attributes this would map to
M_SALES_VALUE in the actual query language as dictated by the example XML descriptor in Figure
2.

3.2 JSON Query Specification

While the user is interacting with the Analysis Wizard interface, all user's choices are combined
into the JSON query specification. For example, in order to retrieve the desirable data for an
example task narrated as “Identify the month with the highest sales volume during 2019 for brand
IdealCola”, the Analysis Wizard attributes selection step will need to be configured as illustrated in
Figure 3 and Figure 4. The illustrated configuration will result to the generated JSON query
specification as shown in Figure 5, assuming that (i) the transactions dataset (Figure 2) was
selected along with the list report analysis and a line chart for output.

Figure 3 - Analysis Wizard - Selecting Attributes

Figure 4 - Analysis Wizard - Setting Filters

http://idealvis.inspirecenter.org/
12

12

Figure 5 - Example JSON Query Specification

Once the user has finished configuring their analysis the fifth step of the Analysis Wizard takes the
generated JSON query specification and sends it to the server so it can be realized to a valid query
language by the Query Engine. The Query Engine implementation is flexible and can easily be
extended to support many query languages. For the purposes of this project, the current
implementation allows only for realizing the JSON query specification to Microsoft's Transact SQL.
For instance, given the above JSON query specification as input, the Query Engine will produce the
following SQL Query as shown in Figure 6.

http://idealvis.inspirecenter.org/
13

13

Figure 6 - Example Realized SQL Query

http://idealvis.inspirecenter.org/
14

14

4 Analytics Service
The Analytics Service is responsible for further analyzing and preparing queried data retrieved
from the dataset (using the Data Service), for the purpose of producing meaningful results
according to the request of the user. Specifically, this service exposes multiple knowledge data
discovery mechanisms (e.g., statistical algorithms for descriptive, predictive, and prescriptive
analytics) that can be executed on the queried data. Acting as a pipeline, this service ingests the
data that were requested from the dataset using the Data Service and transforms those data
according to the analysis algorithm that was selected. If for example the Forecasting Analysis was
selected, the queried data will be fitted to the forecasting algorithm that will further predict
future values of the data distribution according to a set of parameters provided from the user as
required by the algorithm.

During the process of constructing an analysis (i.e., JSON query specification) the user is required
to select an analysis method to run on the queried data. This action is performed at step 2 of the
Analysis Wizard as seen in Figure 7. The analysis method selected by the user is always reflected
on the JSON query specification (Figure 5) as shown on line 3.

Figure 7 - Analysis Wizard – Selecting Analysis

In the next sub-sections, we provide the specifications of how an analysis is defined in the
Analytics Service by illustrating parts of the codebase. Moreover, using diagrams we demonstrate
the flow of information from query to visualization in order to further facilitate our explanation of
the analytics supported by the KnowledgeBase.

4.1 Analysis Definition

Every analysis in the system is represented by an analysis method class which contains all the
analysis logic. Data analyses in the system are implemented in an open manner, using a flexible
hierarchical and polymorphic structure, which enables the KnowledgeBase to be easily extensible
to a new set of analyses, while also being easily maintainable and testable. For extending the
current system with a new analysis method, a new analysis method class needs to be created by
inheriting the AnalysisBase abstract class and implement all required methods accordingly. A list
of all the analysis methods implemented in the KnowledgeBase are presented in Figure 8. Below

http://idealvis.inspirecenter.org/
15

15

we describe the AnalysisBase abstract class and the methods/functions that each analysis method
class has to implement in order to satisfy the requirements of the abstract class.

Figure 8 - Implemented Analysis Methods

AnalysisBase: Represents the actual analysis class that contains the necessary procedures that run
when the user initiates a specific analysis. When this class is inherited for the purpose of creating
a new analysis, the programmer is required to provide definitions to the three methods described
below:

• ProvideAttributeValidator: Every analysis method has its own attribute validator which

specifies the minimum and maximum data attributes and attribute data types required for

the specific analysis to run. Moreover, a validator dictates which data visualizations can be

used as the output for the specific analysis method. This method enables the programmer

to assign an attribute validator object to the specific analysis method. Moreover, the

validator object is run before the analysis query to make sure that all attributes were

provided by the user.

• ExecuteQuery: This method is where the actual Query Engine is called for the purpose of

retrieving the data required for the analysis. Each specific analysis method can define its

own way of querying data via this method.

• RunAnalysis: This method is where the resulting query data are transformed and analysed

according to the selected analysis method. In this function the programmer is required to

build and return the AnalysisReport object resulting from the analysis.

Moreover, the AnalysisBase abstract class has a few pre-built methods, which are used across all
analysis method classes as required. The user can also overwrite those methods if the need arises.
Some of those methods are described below:

• FromListOfDictionariesOfObjectKeyToStringKey: This method performs a transformation

on the data returned by the Query Engine. Essentially this method transforms the data

from a list of dictionaries of key type object and value type object to a list of dictionaries of

key type string and value type object.

• ApplyDataToOutputMethodType: This is an essential method which takes the final set of

data resulting from the analysis and packs them in an OutputMethodInstructions object

which contains all the information on how the data is to be visualised. The generated

http://idealvis.inspirecenter.org/
16

16

OutputMethodInstructions object is always the result of a specific output method (i.e.,

data visualization) instructions builder, who dictates how the data are to be connected on

the data visualization selected by the user. Moreover, if adaption is enabled for the

current analysis task the adaptation engine will be called accordingly from this very

method. Similar to output method builders the adaptation engine also returns an

OutputMethodInstructions object.

• BuildGroupByReportTitle: This method automatically builds a default title for the resulting

analysis report based on the data grouping provided.

Moreover, the AnalysisBase abstract class has a number of properties which are essential for
every analysis method. Some of the essential properties are listed below:

• analysisSemantics: This property is an object which keeps various details regarding the

user’s request. This object is essentially built by the Analytics Service for all analyses prior

to invoking the actual analysis object for data processing. Moreover, the

analysisSemantics object represents a deconstructed, more detailed version of the JSON

query specification of the analysis request (e.g., contains number of categorical, or

measure attributes, number of aggregations etc). Information found in this property are

used for example when the analysis validator checks if all essential attributes were

selected by the user.

• outputMethodType: This property represents the selected output method i.e., data

visualization selected by the user for the current analysis.

• analysisParameters: This property is a specific object different for every analysis method

that is responsible for keeping any extra parameters provided to the analysis by the user.

For instance, for the Top-K analysis this object will contain the K value provided by the

user.

Moreover, all analysis methods implemented in the system are required to produce a single
output; the AnalysisReport object as mentioned previously in the RunAnalysis method. This
object’s properties are described below.

• ReportTitle: Makes up the title of the analysis report that provides insight on to what is

being analysed or visualized.

• OutputMethodInstructions: This is the object that contains all the analysis transformed

data along with specific data visualization instructions as to how these data should be

rendered by the data visualization engine.

4.2 Rendering Analysis Reports

http://idealvis.inspirecenter.org/
17

17

Every new analysis added to the system, is enabled and accessible by data analysts only once it
has been registered on the Analytics Service as well as through the appropriate Service Manager
endpoint. Moreover, it must be noted that all resulting analysis report objects are rendered at the
last step of Analysis Wizard. The Analysis Wizard which runs on the client’s browser hosts the data
visualization engine that can receive any given AnalysisReport object and render it accordingly.
The diagram in Figure 9 further illustrates the flow of information that takes place when the data
analyst user issues a specific analysis request via the IDEALVis platform.

Figure 9 - Overall Analysis Request Data Flow

http://idealvis.inspirecenter.org/
18

18

5 Conclusions
This deliverable presented the overall architecture and purpose of the KnowledgeBase and further
described its underlying services, components and their interaction with the Analysis Wizard and
Adaptation Engine. More specifically, the deliverable (i) illustrated the various database tables
found on the platform’s database and provided a brief description of how each table allows for
the proper platform operation, (ii) demonstrated the Data Service that enables the platform to
connect on external datasets using XML descriptor files and execute queries using JSON query
specifications that are constructed by the user via the Analysis Wizard, and finally (iii) presented
the Analytics Service and how an analysis method is defined in the system, while further
explaining how the resulting report of an analysis request is generated. Moreover, we specified at
which point of the analysis the Adaptation Engine can intervene. Finally, we have illustrated the
overall analysis flow of how the user’s request becomes an analysis report of output method
instructions that can be rendered into a data visualization by the visualization engine.

