

http://idealvis.inspirecenter.org/
1

1

D17 (SOFTWARE)

DESIGN AND DEVELOPMENT
OF THE SERVICE MANAGER

http://idealvis.inspirecenter.org/

IDEALVis Consortium

http://idealvis.inspirecenter.org/
2

2

Executive Summary

This deliverable provides an overview of the Service Manager, which is one of the main platform
components, responsible for handling the bidirectional communication between software
components. More specifically, the main purpose of the Service Manager is to expose the
functionality of all components residing in the IDEALVis platform, by providing appropriate
Application Programming Interfaces (APIs). IDEALVis aims to bring high flexibility and transparency
between various software components by adopting the Service-Oriented Architecture (SOA)
paradigm, thus, the deliverable focuses on how the Service Manager implements the SOA
paradigm, how it makes available, orchestrates, and interconnects different services, including
how other system components leverage those services for delivering the adapted data
visualization experience to the end user.

http://idealvis.inspirecenter.org/
3

3

Table of Contents

EXECUTIVE SUMMARY .. 2

LIST OF FIGURES .. 4

1 Introduction ... 5

1.1 Deliverable Structure ... 5

2 The Service Manager ... 6

2.1 User Model Retriever Service .. 6

2.2 Data Service ... 7

2.3 Analytics Service .. 8

2.4 Analysis Tracker Service ... 10

3 Conclusions .. 13

http://idealvis.inspirecenter.org/
4

4

List of Figures

Figure 1 – The Service Manager ... 6

Figure 2 - User Model Retriever Interface ... 7

Figure 3 - Data Service Execute Query Interface ... 7

Figure 4 - Analytics Service Interface ... 9

Figure 5 - Adding Wizard Usage Unique Identifier on Analysis Result ... 11

Figure 6 - Persisting Analysis Result View Time for Analysis Tracking ... 11

Figure 7 - Analysis Tracker Dashboard Endpoint ... 12

http://idealvis.inspirecenter.org/
5

5

1 Introduction
IDEALVis, as a software platform, is designed with the objective to meet several software
qualities, including performance, correctness, robustness, and reliability. As such, the IDEALVis
consortium has decided to follow the Service-oriented Architecture (SOA) paradigm to meet these
qualities and support modularity, expandability, and interoperability. SOA encapsulates specific
application logic in services (stand-alone entities) that interact with the internal platform’s
components and with external systems, via uniformly defined interfaces that expose available
methods or actions which a client system can execute on the service.

The list below indicates a number of benefits that SOA offers to IDEALVis:

• Reliability: Having small and independent services enables easier debugging and testing of

separate features rather than having to debug massive code all at once i.e., all the

platform code.

• Loosely Coupled: SOA is a loosely coupled architecture (i.e., encourages the development

of independent services for higher efficiency) inspired by object-oriented programming

design that aims to reduce coupling between classes for minimising the risk of breaking

class relationships when a specific class is updated.

• Maintainable: Each service is an independent unit that can be updated, maintained, tested

etc. in isolation without affecting other services, always assuming that the service

implements the publicly exposed interface.

• Reusability: A platform that is built with SOA in mind, consists of small, self-contained, and

loosely coupled services, therefore, reusability of those services is possible withing the

system itself or across other systems.

1.1 Deliverable Structure

The rest of the deliverable is structured as follows:

• Section 2 (i) describes the Service Manager’s underlying services, (ii) presents all the low-

level Application Programming Interfaces (APIs) for each service exposed by the Service

Manager, and (iii) finally demonstrates how the Service Manager exposes data access to

other related components.

• Section 3 concludes the deliverable.

http://idealvis.inspirecenter.org/
6

6

2 The Service Manager
The Service Manager (illustrated in Figure 1) enables other platform’s components to seamlessly
access all services, including services residing in the KnowledgeBase layer, via appropriate APIs. In
particular, the Service manager provides access to: (i) data ingestion and pre-processing
mechanisms; (ii) data manipulation and querying mechanisms, residing in the KnowledgeBase;
and (iii) data analysis algorithms (e.g., statistical algorithms for descriptive and predictive).
Furthermore, the Service Manager exposes the following services to different platform
components:

• User Model Retriever Service

• Data Service

• Analytics Service

• Analysis Tracker Service

Figure 1 – The Service Manager

2.1 User Model Retriever Service

The user model is the central repository that maintains the different user characteristics (e.g.,
psychometric indicators, demographic data) for each of the users. This is an essential component
required by the platform to produce adaptive data visualisations according to the user’s
characteristics. Specifically, the user model is exposed to the different platform components via
the Service Manager through a service called UserModelRetriever. This is a standalone service

http://idealvis.inspirecenter.org/
7

7

that the Service Manager utilises for enabling access to the users’ models. Additionally, since
IDEALVis follows the SOA approach, the UserModelRetriever service was built with flexibility in
mind enabling the platform to seamlessly access user models which either reside in the local
platform’s database, or even externally i.e., it can access user models which are hosted by
external sources/servers, decoupled from the IDEALVis core platform. Furthermore, the Service
Manager enables other platform components and services to seamlessly access and query the
active user’s user model via a simple programming interface as seen in Figure 2. This allows
external platforms to access the user’s model by invoking the RetrieveUserModel method via the
Service Manager, given that they have been granted appropriate access rights. Any service
requesting a user model via the Service Manager is not aware whether the user model is locally
(i.e., in the platform’s database) or externally hosted, since the Service Manager encapsulates this
logic behind the interface seen in Figure 2. More specifically, the user model service provides two
classes which implement the interface in Figure 2 for achieving access to internal or external to
the platform user models. Those classes are the LocalUserModelRetriever and the
RemoteUserModelRetriever. For the purposes of this project and during the pilot study we
utilised the local user model retriever since the user models of the users were hosted in the actual
IDEALVis database for performance reasons.

Figure 2 - User Model Retriever Interface

2.2 Data Service

The Data Service makes an essential part of the IDEALVis platform, as it is responsible for
executing queries on the underlying dataset used for analysis. This service exposes a number of
methods/actions which allow for (i) querying a transactional dataset that is loaded with an
appropriate database connection string and a metadata file which describes the dataset
attributes; (ii) performing aggregations, grouping, and filtering on selected data of the dataset;
and for (iii) retrieving statistics for a selected dataset or specific dataset attributes. The Data
Service is exposed by the Service Manager to the Analytics Service and to the Analysis Wizard
interface. Specifically, the Analytics Service utilises the Data Service through Service Manager for
the purpose of processing the user analytical request and returning the data that is to be fed in
the underlying analysis method requested by the user, as seen in deliverable D19. The Service
Manager exposes the possibility to execute queries to the Analytics Service via the following
interface as seen in Figure 3.

Figure 3 - Data Service Execute Query Interface

The Data Service utilises inheritance and polymorphism to support openness and extensibility.
Currently, this service is able to process/parse a JSON query specification produced via the

http://idealvis.inspirecenter.org/
8

8

Analysis Wizard interface and translate it to an appropriate SQL query, which later is executed
against the underlying dataset. The Data Service can produce ISO/IEC 9075:2016 SQL statements;
however, there are specific functions (e.g., windowed functions, ranking functions) that are
implemented in T-SQL and are thus supported by Microsoft’s SQL Server. Despite these functions,
the flexible approach taken when designing the Data Service makes it possible to quickly adapt
the service and translate the JSON query specification in other variants of SQL (or other standards)
which are supported by other database servers e.g., PostgreSQL. Moreover, the design of this
service makes it possible to access both datasets which are local to the platform’s database or
datasets which are externally hosted on another database server.
The Service Manager also exposes several other services which enable the direct interaction of
the Data Service to the Analysis Wizard. Those services essentially, provide useful information to
the user prior to running a specific data analysis. Some of this information for instance includes
descriptive statistics for the attributes of the dataset, available values for filtering a specific data
attribute etc. Below we list some of the most important Data Service methods exposed to the
Analysis Wizard via the Service Manager:

• GetDatasetModelsByIdAsync: This method provides a list of all the available datasets that

the Data Service can query from. Moreover, this method provides information about all

the available data attributes of a given dataset.

• GetDistinctCategoryValues: Given a specific dataset and a categorical data attribute that

resides inside that dataset, this method will provide a list of the unique attribute values.

• GetRowCount: Given a specific dataset this method will count the number of rows which

the dataset currently has.

• GetDatasetSummary: Given a specific dataset this method will produce descriptive

statistics regarding each of the dataset’s attributes.

• GetCategorySummary: Given a specific dataset and a categorical data attribute that

resides inside that dataset, this method will produce descriptive statistics regarding this

attribute.

• GetMeasureSummary: Given a specific dataset and a numerical data attribute that resides

inside that dataset, this method will produce descriptive statistics regarding this attribute.

• GetCategoryMode: Given a specific dataset and a data attribute, this method will return

the mode value of the data attribute.

2.3 Analytics Service

The Analytics Service enables the analysis of data by exposing several knowledge discovery
mechanisms (e.g., statistical algorithms for descriptive and predictive analytics) that can be
applied on the data requested by a user. Essentially, the Service Manager in this case facilitates
the communication between the Data Service and the Analytics Service, as disused previously in
Section 2.2. This communication takes place via the interface presented in Figure 3. The Analytics

http://idealvis.inspirecenter.org/
9

9

Service ingests data that were requested from the dataset using the Data Service and processes
them according to the selected analysis algorithm. Once the algorithmic operation is completed,
the processed output is sent back to the Service Manager and subsequently back to the Analysis
Wizard. The Analytics Service can be easily enhanced with new analysis methods as this was
presented in D19.
Figure 4 presents the Analytics Service interface which is used by the Service Manager to expose
the analytics functionality to other platform components (e.g., Analysis Wizard, Dashboard). This
interface essentially enables the Service Manager to delegate analysis related requests to the
Analytics Service.

Figure 4 - Analytics Service Interface

Below we explain the different methods and method parameters, offered through the Analytics
Service interface:

RunAnalysis: This overloaded method is one of the key entry points of the system where the
query of the user is initially submitted. All the analysis settings and the user-defined query are
used as input to this specific method. Note that the JSON query specification (i.e., AnalysisQuery
parameter) is passed to the Data Service for execution at a later point by the actual analysis
method used. Once the analysis method finished execution it returns an AnalysisReport object
(described in deliverable D19) which is used by the visualization engine for rendering the final
visual report (last Analysis Wizard step). Below, we describe each of the parameters passed to this
method:

• <TAnalysisType>: This generic parameter signifies which type of analysis is to be executed

by the system. This parameter can receive any object type that inherits the AnalysisBase

abstract class, which is the class used to define new analysis methods for the Analytics

Service. The concept presented here demonstrates the flexibility of the platform to

support new types of analyses without having to modify the actual Service Manager

communication methods / interface.

• AnalysisQuery: The JSON query specification constructed via the analysis wizard is initially,

transformed into this AnalysisQuery object which is the object required by the Analytics

Service for further processing. Note that before the analysis method calls the Data Service

http://idealvis.inspirecenter.org/
10

10

the AnalysisQuery object is modified according to the needs of the analysis and then it is

further transformed into a QuerySpec object as required by the Data Service for execution.

• OutputMethodType: This parameter specifies the type of data visualization to be used for

the analysis output. Moreover, this parameter dictates if an adapted data visualization will

be used or not.

• IAnalysisParameters: This property is a specific object different for every analysis method

that is responsible for keeping any extra parameters provided to the analysis by the user.

For instance, for the Top-K analysis this object will contain the K value provided by the

user.

• ApplicationUser: The information about the user performing the analysis. This object is

used later for retrieving the user’s code needed for requesting the user model from the

User Model Retriever Service.

As an additional note to the RunAnalysis method it must be mentioned that all analyses pinned
on the user’s General Dashboard are actually using the RunAnalysis method from the Service
Manager in order to execute the analysis and render their results, similar to how the last step of
the Analysis Wizard calls the Service Manager for executing a user defined analysis.

ProduceAnalysisGuidance: Every analysis method has its own attribute validator which specifies
the minimum and maximum data attributes and attribute data types required for the specific
analysis to run. Moreover, a validator dictates which data visualizations can be used as the output
for the specific analysis method. The ProduceAnalysisGuidance method is called by the Analysis
Wizard periodically (i.e., every time the user makes a change to the set of analysis attributes) and
is used to validate the inputs the user provides to the analysis. Specifically, this method takes the
current version of the JSON query specification and also the type of the analysis method the user
is trying to perform. Based on those inputs this method executes the corresponding analysis
validator and checks if the user’s inputs are valid. Accordingly, this method returns the
AnalysisGuidance object which packs a set of instructions to further guide the user on how to
proceed with setting up all inputs to the analysis method. The parameters to this function are:

• AnalysisQuery: A JSON query specification constructed via the analysis wizard. This is

submitted prior to running the analysis for inspection by this method.

• AnalysisMethodType: This is an object that specifies the type of analysis method the user

is trying to construct using the Analysis Wizard.

2.4 Analysis Tracker Service

Analysis tracking in IDEALVis is performed using a set of custom-made client-side tracking
mechanisms which record the user interaction, such as constructing an analysis via the Analysis
Wizard and viewing a specific data analysis report i.e., rendered data visualization. Moreover,
those tracking records are prepared, analysed, and presented to the user through the Analysis

http://idealvis.inspirecenter.org/
11

11

Tracker Dashboard where the user can reflect on their efficiency and effectiveness when they are
preforming data explorations using IDEALVis. The Service Manager exposes two endpoints for the
Analysis Tracker Service. The first endpoint purpose is the persistence of the client-side tracking
data in appropriate database tables, while the second endpoint is used for providing the Analysis
Tracker Dashboard with appropriate data regarding the user’s analytical performance.

2.4.1 TRACKING RECORD PERSISTENCE

Analysis Wizard Tracking: While the user constructs an analysis via the Analysis Wizard a specific
client-side procedure counts the number of milliseconds the user spends on each of the Analysis
Wizard’s steps. Moreover, once the user reaches the final Analysis Wizard step their analysis
request is automatically submitted to the Service Manager along with the set of tracking
information regarding every Analysis Wizard step. Moreover, once the request reaches the
Service Manager two steps take place. Initially, the analysis request is sent to the Analysis Service
and the set of tracking data are automatically persisted in the WizardUsageInstances database
table. Once the analysis is executed the Service Manager returns the analysis report back to the
user’s browser for visualization. In addition to the analysis report the Service Manager also
appends a wizard usage instance unique identifier on the analysis result (Figure 5). This identifier
is added on the analysis report so we can later reference each analysis report found in the
platform (e.g., a report might be pinned in the General Dashboard for instance) with a specific
WizardUsageInstance which is required for when tracking the user’s report viewing time as
explained in the next paragraph.

Figure 5 - Adding Wizard Usage Unique Identifier on Analysis Result

Analysis Report Tracking: Every time the user is gazing at a particular analysis report produced by
the system the client-side tracking mechanism records the time taken by the user before they
take the analysis out of focus. Note, that analysis reports produced by the system may reside on
the user’s General Dashboard or at the final step of the Analysis Wizard. Moreover, once the user
stops gazing at a particular analysis report, the tracker submits the tracking information to the
Analysis Tracker Service via the Service Manager. The submitted data include the time (in
milliseconds) the user was gazing at the particular analysis report, and also the report’s
WizardUsageInstance unique identifier. These data are handled by the Analysis Tracker Service
and are persisted in the WizardResultViewingInstances database table (Figure 6).

Figure 6 - Persisting Analysis Result View Time for Analysis Tracking

2.4.2 ANALYSIS TRACKER DASHBOARD

The Analysis Tracker Dashboard leverages data produced from the Analysis Tracker Service to
provide the user with insights regrating their analytical performance. Essentially, the tracking data
collected for the user rare aggregated, and several data visualizations are created on the Analysis
Tracker Dashboard regarding the overall performance of the user but also the performance of the

http://idealvis.inspirecenter.org/
12

12

user per analysis task addressed. The Service Manager exposes the Analysis Tracker Service to the
Analysis Tracker Dashboard via the endpoint presented in Figure 7.

Figure 7 - Analysis Tracker Dashboard Endpoint

http://idealvis.inspirecenter.org/
13

13

3 Conclusions
This deliverable presented the overall architecture and purpose of the Service Manager and
further described its underlying services. The rationale behind our choice for implementing the
various services handled by the Service Manager using the SOA paradigm was justified, and a set
of related advantages were discussed. Moreover, we presented the different system’s services
including the User Model Retriever Service, the Data Service, the Analytics Service, and the
Analysis Tracker Service. Additionally, we explained how those services utilize the Service
Manager for intercommunicating with each other, and we also discussed how those services are
exposed via the Service Manager to other system components using different interfaces,
endpoints, and methods.

