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Executive Summary 

Analytical processing is often a complex and cumbersome process, turning data to insights and 
insights to better and faster business decisions. Data visualization is among the most powerful tools 
in the analyst’s arsenal, shedding light into established or previously unseen patterns. However, its 
success is frequently an interplay between the data analyst’s experience and ability to quickly 
understand and interpret information. Even though business analytics tools have made a significant 
progress to deliver immersive information visualization environments for improving users' 
efficiency and effectiveness, they still do not consider incorporating individual differences in the 
core process that influences the visualization structure, encoding and readability. This paper 
leverages the users’ individual differences to deliver a human-centred by-design adaptation engine 
for business users aiming to improve their comprehension of data visualizations, thus leading to 
improved accuracy and time-to-action efficiency. The proposed adaptation mechanism is evaluated 
using 45 professional analysts from multiple industry sectors. The results suggest that individual 
differences can play an important role in the adaptation process of data visualizations enhancing 
analysts' comprehensibility and decision making. 
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Human-centered Information Visualization Adaptation Engine

Analytical processing is often a complex and cumbersome process, turning data to insights and insights to better and faster business
decisions. Data visualization is among the most powerful tools in the analyst’s arsenal, shedding light into established or previously
unseen patterns. However, its success is frequently an interplay between the data analyst’s experience and ability to quickly understand
and interpret information. Even though business analytics tools have made a significant progress to deliver immersive information
visualization environments for improving users’ efficiency and effectiveness, they still do not consider incorporating individual
differences in the core process that influences the visualization structure, encoding and readability. This paper leverages the users’
individual differences to deliver a human-centred by-design adaptation engine for business users aiming to improve their comprehension
of data visualizations, thus leading to improved accuracy and time-to-action efficiency. The proposed adaptation mechanism is evaluated
using 45 professional analysts from multiple industry sectors. The results suggest that individual differences can play an important
role in the adaptation process of data visualizations enhancing analysts’ comprehensibility and decision making.

CCS Concepts: • Human-centered computing → Visualization toolkits; Visual analytics; Information visualization; User
models; User centered design; Visualization techniques; • Information systems→ Personalization.

Additional Key Words and Phrases: information visualization, adaptation, personalization, user modeling, individual differences, rule
based adaptation

ACM Reference Format:
. . Human-centered Information Visualization Adaptation Engine. In . ACM, New York, NY, USA, 19 pages.

1 INTRODUCTION

The last decade has been a witness to phenomenal growth in the volume of information and data science, revolutionizing
many industry domains. With such volumes of data being generated, companies that want to stay competitive in
today’s data driven market quickly adopt business intelligence and analytics (BI&A) software. These software provide a
collection of tools for handling, integrating, cleaning data and performing analysis of structured and unstructured data
for the purpose of delivering actionable information to business decision makers [20]. Results of the performed analyses
are usually presented using interactive data visualizations/data tables that are embedded within reports and dashboards
that the user can utilize for performing further exploration, collaboration and acquisition of useful insights. Moreover,
BI&A platforms are slowly adopting techniques that enable non-expert-analysts e.g., business users to utilize such tools.
One of these techniques is self-service-analytics, which is described as “all the facilities of a BI environment that enable
users to become more self-reliant and less dependent on the IT organization”; facilities may include easier access to
data and simpler, customizable user-interfaces amongst others [6]. Despite the assistance provided to the user through
the various techniques and facilities, the increasing numbers of data sources and the huge variety of data formats, can
result in complications that tend to disorient the user that has to interact with rich business data visualizations with an
abundance of features in order to reach a decision. Although, BI&A platforms provide vast amounts of customizable data
visualizations they tend to follow a one-size-fits-all approach, where the rendered data visualizations are solely based
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made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
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on the selected dataset metadata or the current analysis task, not considering the user’s requirements or individual
differences.

Research on individual differences in visualization is progressively growing, showing that interaction with a data
visualization can be affected by an individual user’s cognitive abilities e.g., visual working memory [29], cognitive styles
e.g., field dependent [27], personality factors e.g., extraversion [14] and expertise/experience [17, 18]. It is evident that
the impact of individual differences on data visualizations needs to be further explored in the context of the business
domain, since related research was rarely applied to such context. Subsequently, appropriate adaptive data visualization
systems need to developed, which consider the unique needs and characteristics of the business analyst user. This paper
presents a novel human-centered adaptation engine, which aims to enhance the comprehensibility of data visualizations
thus improving accuracy and time-to-action efficiency. The adaptation engine adopts an ensemble learning framework
consisting of two phases: (i) a fuzzy rule generation procedure, which generates fuzzy (weak learner) rules based on the
impact of cognitive factors on the understandability of data visualizations; and (ii) the classification procedure, which
combines the rules to produce the adapted content.

The adaptation engine was evaluated, and the delivered adaptation was found to be effective in improving the user’s
(i) performance (i.e., time taken to address an analysis task) and accuracy (i.e., correctness of analysis task response), as
well as (ii) the perceived user experience and system usability scores. For performance users were faster by an average
of 8.1 seconds when adaptation was enabled. Moreover, analysis task accuracy scores revealed that 62% of users were
more accurate when responding to analysis tasks for which adaptation was enabled. Finally, adaptation impacted the
users’ perceived user experience score with an increase of 9%, and the reported system usability score with an increase
of 1.8%.

The rest of this paper is structured as follows: Section 2 presents the system model, consisting of the user model,
analysis tasks, data and data visualizations, which form the core adaptation engine inputs. Next, Section 3 introduces the
adaptation engine and its two phases: adaptation rules and adaptation process. The rule extraction processed is further
described in Section 4.6. A user study, consisting of 45 business analysts was performed to evaluate the adaptation
engine’s impact on user’s efficiency and effectiveness. Section 5 presents the user study setup and discusses its results.
Then, Section 8 presents related work on data visualization adaptation based on individual differences. Finally, Section 9
concludes the paper.

2 SYSTEMMODEL

In this section we provide an overview of the system model. A table of respective symbols is provided in Table 1. The
system has a set of data analyst users 𝑈 and for each user {𝑢1, 𝑢2, ..., 𝑢𝑁 } the system maintains a user model 𝑢𝑚(𝑢𝑖 ),
which stores the user’s characteristics (e.g., demographics, psychometric indicators). We assume that as part of their
daily operations, each user 𝑢𝑖 is assigned a subset of the organization’s data analysis tasks 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑁 } that need
to be addressed through appropriate explorations. We also assume that a task 𝑡𝑖 will require the construction of some
query 𝑞 to retrieve some data 𝑑 , which will be visualized appropriately by the user’s interface.

2.1 User Model

The user model of user 𝑢𝑚(𝑢𝑖 ) is a set of triplets of the form (𝑐𝑡, 𝑐ℎ, 𝑣𝑎𝑙), where 𝑐𝑡 represents the user model item
category (e.g., 𝑑=demographics, 𝑝=psychometric characteristics), 𝑐ℎ represents an actual characteristic that belongs to
the triplet’s category (e.g., age), and 𝑣𝑎𝑙 which represents the respective value for the triplet’s characteristic (e.g., 35 for
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Table 1. Table of Symbols

Symbol Description

U Set of all users ({𝑢1, 𝑢2, ..., 𝑢𝑁 })
𝑢𝑚(𝑢𝑖 ) The User Model for a given user 𝑢𝑖

𝑇 Set of all system analysis tasks ({𝑡1, 𝑡2, ..., 𝑡𝑁 })
𝑉 Set of all data visualization types ({𝑏𝑎𝑟, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑖𝑛𝑒, 𝑟𝑎𝑑𝑎𝑟, 𝑝𝑖𝑒, 𝑡𝑎𝑏𝑙𝑒})
𝑉𝐸 Set of all modifiable visual elements ({ℎ𝑔𝑙, 𝑐𝑝𝑡1, 𝑐𝑝𝑡2, 𝑑𝑡, 𝑒𝑠𝑖𝑧, 𝑝𝑟𝑜𝑥, 𝑑𝑙})
𝑞 A user-defined query produced via the Analysis Wizard interface
𝑑 Dataset that resulted from a user query 𝑞

𝐴𝑅𝑉𝑇 Adaptation rule set used for selecting the data visualization type (𝑣𝑖 ∈ 𝑉 )
𝐴𝑅𝑉𝐸 Adaptation rule set used for selecting visual element modifications (𝑣𝑒𝑖 ∈ 𝑉𝐸)

age). An example of a user model for user 𝑢𝑖 can be 𝑢𝑚(𝑢𝑖 ) = {(𝑑, 𝑎𝑔𝑒, 35), (𝑝,𝑤𝑚, 𝑙𝑜𝑤), (𝑝, 𝑓 𝑑𝑖, 𝑓 𝑑)}, denoting that the
user 𝑢𝑖 has an age of 35, a low Working Memory and is classified as field-dependent.

2.2 Tasks

A task (𝑡𝑖 ∈ 𝑇 ) represents a business question, such as "Identify if the glass bottles pack type is growing in terms
of sales value in August of 2021 compared to June 2021.", that needs to be explored and addressed. A task is a tu-
ple 𝑡𝑖 = (𝑡𝑒𝑥𝑡, 𝑡𝑦𝑖 ) consisting of: (i) the narrative (𝑡𝑒𝑥𝑡 ); and (ii) the task’s type (𝑡𝑦𝑖 ∈ 𝑇𝑌 ), as summarised in
Table 2 (following the work of Amar et al. [1] which presented a set of low-level analytical tasks that largely
capture people’s activities while employing information visualization tools). An example of a task 𝑡𝑖 is (𝑡𝑒𝑥𝑡 =

"Identify if all Soft Drinks sales were affected by seasonality in 2019", 𝑓 𝑎𝑛), where the type of the task 𝑡𝑦𝑖 is 𝑓 𝑎𝑛 =

𝐹𝑖𝑛𝑑𝐴𝑛𝑜𝑚𝑎𝑙𝑦).

Table 2. Available System Task Types𝑇𝑌

Task Type 𝑡𝑦𝑖 Task Name Task Descriptions [1]

𝑟 𝑣𝑙 Retrieve Value Given a set of specific cases, find attributes of those cases.
𝑐𝑑𝑣 Compute Derived Value Given a set of data cases, compute an aggregate numeric representation of those

data cases.
𝑓 𝑎𝑛 Find Anomalies Identify any anomalies within a given set of data cases with respect to a given

relationship or expectation, e.g., statistical outliers.
𝑐𝑜𝑟 Correlate Given a set of data cases and two attributes, determine useful relationships

between the values of those attributes.
𝑐𝑜𝑚𝑝 Simple Comparison Simple data value comparison e.g., finding the lowest or the highest value in the

dataset. (not in [1])

2.3 Data

The system employs an information retrieval engine that can support the users’ data explorations. In the context of this
work, we assume that the system maintains a number of datasets. The datasets can can be accessed via a Query Engine,
which can specify queries in a supported language, such as SQL. Following the example of the previous sections, to
address the task 𝑡𝑖 , the system can construct query 𝑞 = ”𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑀𝑜𝑛𝑡ℎ, 𝑆𝑎𝑙𝑒𝑠𝑉𝑎𝑙𝑢𝑒 𝑓 𝑟𝑜𝑚𝑆𝑎𝑙𝑒𝑠𝐷𝑎𝑡𝑎𝑠𝑒𝑡”.
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Table 3. Table of Adaptive Elements𝑉𝐸 and their Applicability to Data Visualization Types

Element 𝑣𝑒𝑖 Description Bar Column Line Radar Pie Data
Chart Chart Chart Chart Chart Table

ℎ𝑔𝑙 Enables horizontal and vertical grid lines × × × ×

𝑐𝑝𝑡1 Switches to color palette 1 × × × × ×(duller colors compared to 𝑐𝑝𝑡2)

𝑐𝑝𝑡2 Switches to color palette 2 × × × × ×(brighter colors compared to 𝑐𝑝𝑡1)

𝑑𝑡
Enables dark background and white × × × × × ×text (dark theme)

𝑒𝑠𝑖𝑧
Changes the default size of primary × × × ×elements (bars, columns, lines)

𝑝𝑟𝑜𝑥
Changes the default proximity between × ×primary elements (bars and columns)

𝑑𝑙
Displays data values on top of × × × × ×elements (e.g., above bars)

2.4 Data Visualizations

The system maintains a Data Visualization Engine that is responsible for rendering all system’s data visualizations. All
data visualizations𝑉 , have a set of applicable visual elements (i.e., visual modifications) (𝑣𝑒𝑖 ∈ 𝑉𝐸) which can be enabled
by the adaptation engine for delivering the desired adaptation/personalization. Table 3 lists the set of visual elements
𝑉𝐸 and their applicability on each of the available data visualization types𝑉 . In order to render a data visualization, the
Data Visualization Engine requires: (i) the data returned by the Query Engine; (ii) the type of data visualization 𝑣𝑖 to
render; and (iii) the set of visual element modifications 𝑣𝑒𝑖 as selected by the Adaptation Engine.

3 ADAPTATION ENGINE

The adaptation engine is responsible for delivering the best fit data visualization to the analyst user by utilizing the
user’s model 𝑢𝑚(𝑢𝑖 ), an analysis task 𝑡 𝑗 ; and two sets of adaptation rules for selecting: (i) the best fit data visualization
type according to the user model; and (ii) a set of visual elements modifications, which further personalise the data
visualization.

This section presents the internal mechanisms of the proposed adaptation engine, describing how the adaptation
rules are utilized to deliver best-fit visualizations. Section 4 provides insight on how the rules were constructed.

3.1 Adaptation Rules

The adaptation rules represent if-then rules that are triggered during the adaptation process. They are stored in two sets:
(i) rules for adapting visualization types (𝐴𝑅𝑉𝑇 ); and (ii) rules for adapting visualization elements (𝐴𝑅𝑉𝐸). Example
rules from the 𝐴𝑅𝑉𝑇 and 𝐴𝑅𝑉𝐸 rule sets can be seen in Table 4 and Table 5 respectively.

The rules consist of several metadata attributes that allow them to be triggered according to the user, task and
data characteristics. For example, the Factor and Level columns in both rule sets refer to human factors (e.g., Working
Memory) and the level for that human factor (e.g., High) respectively. The rule sets are also augmented with several
other metadata attributes (e.g., TaskType, TS and UniDim columns in the 𝐴𝑅𝑉𝑇 ) to provide further refinements for
the analysis task type (e.g., Find Anomaly corresponding to task type 𝑡𝑦𝑖 = 𝑓 𝑎𝑛), whether the analysis task processes
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Table 4. Example Adaptation Rules for Visualization Type (ARVT)

Factor Level TaskType TS UniDim BAR RADAR COLUMN LINE PIE TABLE

WM High Find Anomaly False True 4 % 0 % 96 % 0 % 0 % 0 %
WM High Find Anomaly True True 0 % 92 % 0 % 4 % 0 % 4 %

Table 5. Example Adaptation Rules for Visual Elements (ARVE)

Factor Level ChartType Element ENABLE DISABLE

WM High Bar DARK_MODE 60 % 40 %
WM High Line DARK_MODE 32 % 68 %

time-series data, and if the data feature one or more dimensions. Additionally, the𝐴𝑅𝑉𝐸 rule set contains the ChartType
and Element columns, which refer to the chart type and visual element modification that a specific rule applies.

The above-mentioned columns are used for filtering each of the rule sets prior to adaptation. For instance the
adaptation engine uses Factor, Level, TaskType, TS and UniDim columns of the 𝐴𝑅𝑉𝑇 rule set for filtering down the
rules according to user model attributes and analysis task metadata. The filtered rules are then are used for voting the
best visualization type. Similarly, the adaptation engine uses the Factor, Level, ChartType and Element columns of the
𝐴𝑅𝑉𝐸 rule set for filtering down the rules. It then uses the filtered rules for voting whether or not a specific visual
element adaptation (e.g., dark theme 𝑑𝑡 ) should be applied applied on the selected data visualization.

The selected representation of the rules serves two purposes: (i) to facilitate efficient execution of the rules; and (ii)
to improve the explainability of the inference process carried out by the system. A simplified example of the first rule
in Table 4 is presented below: IF Factor="WM" and Level="High" and TaskType="Find Anomaly" and TS="False" and
UniDim="True" THEN VisualizationType=Column=0.96, Bar=0.04.

The rule is interpreted as follows: if the current user has high working memory, the active task is Finding Anomaly,
the data are not time series data and they contain one dimension, then vote for the column visualization type with
96% and for the bar visualization type with 4%. As it will be described in the next Section, the ensemble of all rules,
considering all aspects of the user model, yields the final result, i.e., the visualization type with the highest weighted
vote. The same voting approach is used for rules in the 𝐴𝑅𝑉𝐸 rule set, instead for that rule set the engine votes whether
or not to enable a specific visual element modification.

3.2 Adaptation Procedure

The complete adaptation procedure is illustrated in Figure 1. The procedure is initiated when a user attempts to retrieve
data for a task 𝑡𝑖 (step 1a) using a query 𝑞. Before any adaptation takes place, the Adaptation Engine forwards the query
to the Query Engine (step 1b). From there the Query Engine is responsible for processing 𝑞 (step 1c) and returning the
required data 𝑑 for the analysis (step 1d) back to the Query Engine. Subsequently, the Query Engine returns the data
(step 1e) back to the Adaptation Engine, which are combined with the task’s metadata 𝑡𝑚𝑖 (step 1f).

The Adaptation Engine can take two possible routes of execution: (a) perform adaptation (step 2a); or (b) skip
adaptation (step 3). This is decided according to the application requirements (e.g., a task that has a pre-selected data
visualization type) or user study setup (e.g., testing non-personalized vs. personalized content). If no personalization is
required, the adaptation process is skipped, and the data (step 4) and pre-selected data visualization type (step 3) are
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Fig. 1. Adaptation Process

forwarded to the Data Visualization Engine (step 5) that is responsible for rendering the output to the user (step 6).
Alternatively, if adaptation is required, the user’s model 𝑢𝑚(𝑢𝑖 ) (step 2b) and task metadata 𝑡𝑚𝑖 are used for filtering
the rule sets and retrieving all matching rules (step 2c). The the aggregation of all rule votes decides first the best fit data
visualization type and then accordingly the visual element modifications. Finally, the "winner" data visualization type
and its visual element modifications/adaptations are sent to the Data Visualization Engine (step 5) that is responsible
for rendering the adapted output to the user (step 6).

The adaptation procedure can be conceptually illustrated as the following function:

𝑎𝑝 (𝑞, 𝑡𝑖 , 𝑢𝑖 ) = (𝑣𝑖 , 𝑑,𝑉𝐸) (1)

The adaptation procedure function receives a query 𝑞 for a task 𝑡𝑖 by user𝑢𝑖 , and returns the desired data visualization
instructions in the form of a triplet that contains the best fit data visualization (𝑣𝑖 ), the queried data 𝑑 and any visual
element modifications (𝑣𝑒𝑖 ∈ 𝑉𝐸). The output of this function is used as input to the Data Visualization Engine. The
logic behind this function is further detailed using pseudo-code in Algorithm 1.

The adaptation procedure algorithm 1 starts by retrieving the queried data 𝑑 for query 𝑞 (line #1) and the task
metadata 𝑡𝑚𝑖 (line #2). If the task has a predefined data visualization (line #3) the algorithm stops the execution and
returns the pre-selected data visualization type for the task, the queried data and the default set of visual element
modifications {} (line #4). Otherwise, adaptation is initiated by first retrieving the user’s model (line #6) and subsequently
identifying the best fit data visualization type. This is done by first filtering down the 𝐴𝑅𝑉𝑇 rule set (line #7) according
to the user’s user model and task metadata. The resulting set of 𝐴𝑅𝑉𝑇 rules is forwarded to the voter function (bagging

6
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Algorithm 1 The Adaptation Procedure Algorithm 𝑎𝑝 (𝑞, 𝑡𝑖 , 𝑢𝑖 )
1: 𝑑 ← 𝑞𝑢𝑒𝑟𝑦𝐸𝑛𝑔𝑖𝑛𝑒 (𝑞)
2: 𝑡𝑚 ← 𝑔𝑒𝑡𝑇𝑎𝑠𝑘𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎(𝑡𝑖 )
3: if 𝑡𝑚.𝑝𝑟𝑒𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is not NULL then
4: return (𝑡𝑚.𝑝𝑟𝑒𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑑, {})
5: end if
6: 𝑢𝑚 ← 𝑢𝑚(𝑢𝑖 )
7: 𝐴𝑅𝑉𝑇 ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑅𝑉𝑇 (𝑢𝑚, 𝑡𝑖 )
8: 𝑏𝑒𝑠𝑡𝑉 𝑖𝑠𝑇𝑦𝑝𝑒 ← 𝑣𝑖𝑠𝑇𝑦𝑝𝑒𝑉𝑜𝑡𝑒𝑟 (𝐴𝑅𝑉𝑇 )
9: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← ∅
10: for each 𝑒𝑙𝑖 ∈ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 do
11: 𝐴𝑅𝑉𝐸 ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑅𝑉𝐸 (𝑢𝑚,𝑏𝑒𝑠𝑡𝑉 𝑖𝑠𝑇𝑦𝑝𝑒, 𝑒𝑙𝑖 )
12: 𝑒𝑛𝑎𝑏𝑙𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ← 𝑣𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑜𝑡𝑒𝑟 (𝐴𝑅𝑉𝐸)
13: if 𝑒𝑛𝑎𝑏𝑙𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 then
14: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∪ {𝑒𝑙𝑖 }
15: end if
16: end for
17: return (𝑏𝑒𝑠𝑡𝑉 𝑖𝑠𝑇𝑦𝑝𝑒, 𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

ensemble aggregation) that aggregates the votes for each of the available visualization types and returns the winner
data visualization (line #8).

The algorithm then selects a number of visual element modifications that are specific to the winner data visualization.
Initially an empty set called selectedElements is initiated (line #9) for keeping element modifications that are to be
enabled on the winner data visualization. Moreover, at (line #10) a for-loop goes through all possible visual element
modifications (𝑉𝐸) supported by the visualization engine and filters rules from the 𝐴𝑅𝑉𝐸 rule set using the user’s
user model, the winner data visualization type and the visual element that is to be voted. The filtered set of rules is
forwarded to the voter function (line #12) that aggregates the votes and decides to enable or disable the current visual
element modification 𝑣𝑒𝑖 . The result of the vote is added in the selectedElements set (line #14). Finally, once all elements
are evaluated the winner data visualization type, the queried data and the selectedElements set are returned to the
Visualization Engine (line #17).

4 ADAPTATION RULES EXTRACTION STUDY

Adaptation rules are used for selecting the best fit data visualization and modifier visual elements in accordance to the
business user’s characteristics. This section describes how the the adaptation rule-sets and user models were extracted
through a user study that analyzed the interactions (performance and accuracy) of 60 business data analyst participants
with different data visualizations. The study required participants to engage with various visual analysis tasks of
varying complexity, with each task constructed using different visualization conditions, recording their performance
and accuracy. The study enabled us to assess the impact of individual differences and human factors on the performance
and accuracy when solving visual analysis tasks, influenced by different visualization types, and by different visual
elements i.e., visual modifications.
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4.1 Participants

The study recruited 60 business data analyst participants from two industry organizations (RAI Consultants LTD1

and KPMG Cyprus2) that had on average at least 2 years of experience in the field of data analytics. An important
participation precondition was that part of the participant’s daily job responsibilities was the interaction with data
visualizations. Moreover, the sample was made up of analysts working on diverse industry fields such as Retail,
Marketing, Advisory Services, Audit and Risk Assessment, consisting of 30 Male and 30 Female participants, with their
ages ranging from 24 to 57 (mean age 33.9 ± 7.8). All participants’ had varying expertise levels, including directors and
managers, executive-, senior- and junior-analysts.

4.1.1 User Modeling. The user model, which includes human factors, demographics, experience and expertise, of all
users were extracted using psychometric tests and questionnaires based on our previous works in [2, 31]. In particular,
the user model is comprised of the Field Dependent-Independent (FDI) cognitive style construct, several cognitive
processing abilities and traditional characteristics. The FDI values where captured using a virtual version of the Group
Embedded Figures Test [34]. The cognitive abilities include: (i) two Stroop-like tests used for capturing the control of
attention and speed of processing; and (ii) a visual working memory test similar to the one in [9]. Furthermore, user
model includes other factors, such as: (i) personality factors, extracted using the Eysenck Personality Questionnaire
(EPQR-S) English version [10]; (ii) emotional regulation factors, extracted using the Emotional Regulation Questionnaire
(ERQ) [15]; (iii) decision making factors, extracted using the Decision Making Style Questionnaire [23]; and (iv) problem
solving factors, extracted using Parker’s Problem-Solving Style Questionnaire (PSSQ) [11]. Finally, the user modeling
process also records demographic information for each participant including their gender, age, and their educational
status, and experience and expertise characteristics.

4.2 Dataset

To cater for the diverse user analysts’ expertise, a synthetic sales dataset was constructed, with concepts that are easy
for comprehension and analysis. More specifically, a synthetic dataset of comic book sales was constructed, with typical
dimensions, such as time, product characteristics and location characteristics, and a few distributive (e.g., quantity,
price) and algebraic measures (e.g., average price, weighted price).

4.3 Data Visualization Types

According to our previous findings [2] we decided to use the data visualizations seen in Table 6 for this user study.
These visualizations represent the most frequently used data visualizations in the business domain. While the Radar
Chart is less widely used in the domain of interest when compared to the rest of the selected charts, we decided to
include it since participants with higher visual working memory may have higher preference for this type of chart over
bar charts [29].

4.4 Data Visualization Tasks

Using the synthetic comic book sales dataset, we further produced 160 visual exploration tasks. To facilitate our
description, consider the task example presented in Figure 2. A task consists of a business question that a participant
needs to address, accompanied by a non-interactive data visualization, which is not interactive. Finally, at the bottom of

1https://www.rai.com.cy/
2https://home.kpmg/cy/
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Table 6. Available System Data Visualizations𝑉

Data Visualization Type 𝒗𝒊 Visualization Name

𝑏𝑎𝑟 Bar Chart
𝑙𝑖𝑛𝑒 Line Chart
𝑝𝑖𝑒 Pie Chart

𝑐𝑜𝑙𝑢𝑚𝑛 Column Chart
𝑡𝑎𝑏𝑙𝑒 Data Table
𝑟𝑎𝑑𝑎𝑟 Radar Chart

the task, the user can provide their response and submit their answer. In the background, the system records the time it
took for the participant to respond (in milliseconds) and assess whether the response of the participant was correct.

Fig. 2. User Interface for Addressing a Data Analysis Task

The tasks were organized into four experiments: (i) Chart Type experiment; (ii) Task Complexity experiment; (iii)
Dimensionality experiment; and (iv) Visual Elements experiment, to capture user interactions with visualizations of vary-
ing types, complexity, dimensionality and appearance respectively. Furthermore, the tasks features different type using
the taxonomy presented in Table 2. In particular, the Chart Type experiment consisted of simple tasks (e.g., comparison,
retrieve value) across all visualization types using a single dimension. The Task Complexity experiment introduced
more complex tasks such as finding data anomalies, computing derived values, or correlation. The Dimensionality
experiment introduced tasks with 2, 3 and 4 dimensions. Tasks in the above experiments were delivered using default
visual settings (i.e., no modifications on visual elements) and act as control tasks to the Visual Elements experiment.
The tasks for the Visual Elements Experiment were divided into seven sets, each one introducing a visual element
modification (𝑣𝑒𝑖 ∈ 𝑉𝐸) as seen in Table 3.

4.5 Study Procedure

Due to the implications of the national restrictions in response to the COVID-19 pandemic, it was decided that the
study had to be conducted in a remote manner. Each participant was given access to the experiment platform, using the
credentials used previously for extracting their user models.
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The study was conducted for seven days where participants had to complete all four experiments (i.e., 160 visual
exploration tasks). Once an experiment started, the platform loaded the analysis tasks in a random order and presented
them to the participant in a consecutive fashion. A task was completed once the participant provided a response. One
important constraint was that once an experiment started it could not be stopped until all tasks were addressed. During
the experiment our system collected (i) the time (in milliseconds) taken by each participant to provide an answer to a
specific task, and (ii) the validity of the answer provided.

At the beginning, all participants were given a set of training analysis tasks similar to those of the 4 experiments.
Additionally, the users were given instructions on how to set their screen environment, such as setting the minimum
screen size and screen resolution, to ensure that the study experience was the as identical as possible across different
participants. This was essential to avoid problems such as avoiding cases where the visualization and/or task controls do
not fit in a small screen causing the participant to scroll vertically, thus increasing their cognitive load and decreasing
their performance. Moreover, prior to being able to engage with each of the actual experiments, written instructions
were given to the participants indicating the overall experiment process and the approximate amount of time required
to complete each experiment.

4.6 Extracting Adaptation Rules

This section describes the process used for extracting adaptation rules for visualization types (𝐴𝑅𝑉𝑇 ) and visual
elements (𝐴𝑅𝑉𝐸) from the recorded results of the study. While the collected results can provide insight on the influence
of human factors when processing data visualizations it is not the goal of this work to go over such findings.

Adaptation Rules for Data Visualization Types. It must be noted that for generating the 𝐴𝑅𝑉𝑇 rule set, only responses
from the three control experiments were used (i.e., responses for the Visual Elements experiment were excluded). The
following five steps describe the procedure performed to extract rules for every human factor group. To facilitate our
description, we will describe the procedure for a single group of participants, the ones with High Working Memory, as
the process is identical for all other groups.

Step 1 starts by filtering the responses to the selected group of participants. In Step 2, the response time values are
aggregated according to the task’s metadata and chart type, to produce the average response time of each participant
on every data visualization type, task types and data characteristics. Step 3, ranks the data visualization types for
each participant at different task configuration levels, such as task type, and data characteristics. Ranking is based
on the average response time the participant achieved when using a specific data visualization under a set of specific
analysis task configuration. In Step 4 the results are further filtered to the data visualization with the highest Rank
in combination with the analysis task configuration. The results are then summarized for all participants leading to
six records, each representing the score of each of the six available data visualizations used for a specific analysis
task configuration. Essentially, score in this context represents the number of times a specific data visualization had
the best performance in terms of time response (in milliseconds) for a specific analysis task configuration across all
participants. In the final step, the data visualization scores are normalized to the range [0..1], assuming that all rules
represent homogeneous weak learners (i.e., all rules are of equal weight). The resulting 𝐴𝑅𝑉𝑇 is used by the adaptation
engine to select the best fit data visualization as described in Section 3.

Adaptation Rules for Visual Elements. In this section, we define the rule extraction process of the 𝐴𝑅𝑉𝐸 set, which
utilizes the responses captured from both the control experiments and the Visual Elements experiment. For instance,
rule extraction for the "dark theme" visual element/setting requires the utilisation of responses from Visual Elements
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experiment, which had "dark theme" enabled, and all corresponding analysis tasks from the rest of the experiments,
acting as control analysis tasks. Similarly to the previous section, the 𝐴𝑅𝑉𝐸 rule set was generated in 5 steps. To
facilitate the description, we consider the example of generating rules for the "dark theme" visual element high working
memory participants on the six available data visualization types.

Step 1 filters the responses so that only results from high working memory participants interacting with "dark
theme" tasks are included. In Step 2, the response time variable is aggregated for each participant when dark theme is
enabled and disabled across all data visualization types. Step 3 ranks the enable/disable options for each participant for
each data visualization type based on the average response times. In Step 4, the results are further filtered to the data
visualization with the highest Rank and are aggregated for all participants, resulting in the best dark theme option for a
specific data visualization type. This results in 12 records (2 dark theme options × 6 visualization types) recording the
number of times each option was the most effective for each visualization type. Finally, in step 5, the two dark theme
options’ scores are normalized to the range [0..1], similarly with the previous section. The resulting 𝐴𝑅𝑉𝐸 is used by
the adaptation engine to configure the best fit data visualization elements as described in Section 3.

5 ADAPTATION ENGINE EVALUATION STUDY

In this section, we present a user study that evaluates the use of adapted/personalized data visualization to improve
the efficiency and effectiveness of business data analysts. The study collects the following evaluation metrics: (i)
performance and accuracy of participants when addressing visual analysis tasks; (ii) perceived user experience; and (iii)
perceived system usability. For capturing the adaptation engine’s impact on the above mentioned metrics we followed
a within-subjects study design, enabling us to record all evaluation metrics when the participant navigated over:
(i) the original non-adapted/personalized content, which includes analysis tasks with predefined data visualizations
without any alterations or enhancements; and (ii) data analysis tasks that include dynamically adapted/personalized
data visualizations generated from the adaptation engine. Our null hypotheses are the following:

Hypothesis H01: The performance of the participants in terms of milliseconds taken to address an analysis task,
between the two conditions (i.e., adaptation enabled and disabled) will not be significantly different.

Hypothesis H02: The accuracy of the participants in terms of the total number of tasks addressed correctly, between
the two conditions (i.e., adaptation enabled and disabled) will not be significantly different.

Hypothesis H03: The system’s user experience score, between the two conditions (i.e., adaptation enabled and
disabled) will not be significantly different.

Hypothesis H04: The system’s usability score, between the two conditions (i.e., adaptation enabled and disabled) will
not be significantly different.

5.1 Participants

For this study we recruited 45 business data analyst participants of which 24 were male and 21 were female. Their age
ranged between 25 and 60 years (mean age 35.4 ± 8.8) and on average they had at least 2 years of experience in the
field of data analytics. It has to be noted that 21 out of the 45 participants were also recruited in our previous user
study described in Section 4.6. The new participants were recruited from the same organizations and adhered to the
same participation preconditions as in the above mentioned user study. It must be noted that all new participants were
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Table 7. Example pair of Non-adapted/Adapted Analysis Tasks

Task Name Task Narrative Task Type Visualization Used

T01 Control Task Identify the month with the highest sales
during 2021 for brand "IdealCola". Simple

Comparison

Bar
Chart

T01 Adaptive Task
Identify the month with the highest sales
during 2021 for product
"IdealCola Zero .33ltr x8 Can".

Adapted Data
Visualization

given an appropriate time frame to go through our user modelling platform and perform all psychometric tests and
questionnaires for the purpose of user modeling.

5.2 Dataset

The analysis dataset was constructed in collaboration with the partner organizations to cater for the diverse expertise
and experience of the participant business analysts. A real dataset focusing on soft drinks sales was selected to be used
for the study. The dataset comprises of 19 attributes representing the time, product and outlet dimensions (8 categorical,
1 boolean, 1 date, 4 integers and 5 measures) and consists of 731,446 real sale transactions recorded over the period of 3
years (2019-2021). The outlet names, brands and product names of the dataset were anonymized upon request of the
providing organization.

5.3 Analysis Tasks

Using the realistic sales dataset, 38 analysis tasks were created in pairs of equal complexity, resulting in 19 pairs of tasks.
An example of a task pair is presented in Table 7. Each pair includes: (i) the control non-adapted/non-personalised
task addressed using a specific/predefined visualization type; and (ii) the adapted task which will utilise the adaptation
engine’s capabilities to return the best fit data visualization to the participant addressing that particular task. Moreover,
each pair of tasks has a specific analysis task type, which follows the same taxonomy of tasks presented in Table 2. In
the background, the system records the time it took for the participant to interact and respond to the task question (in
milliseconds) and assess whether the response of the participant was correct.

5.4 Study Material

Besides recording performance and accuracy for each task, the study aimed to capture the users’ experience and system
usability factors. To this end, we utilised two accredited system evaluation questionnaires which we combined into a
web-based questionnaire. Specifically for measuring the participants’ user experience we used the User Experience
Questionnaire Sort Version (UEQ-S) [32]. According to the questionnaire’s authors, this questionnaire’s scales “cover a
comprehensive impression of user experience. Both classical usability aspects (efficiency, perspicuity, dependability)
and user experience aspects (originality, stimulation) are measured”. Moreover, for measuring the system’s usability
we used the System Usability Scale (SUS) questionnaire [28]. This 10-scale questionnaire provides a reliable tool for
measuring the usability of a system. We chose this tool as its deemed appropriate for our purpose since it has become
an industry standard, with references in over 1300 articles and publications [28].
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5.5 Study Procedure

Due to the implications of the national restrictions in response to the COVID-19 pandemic, it was decided that the
study had to be conducted in a remote manner. At the beginning, all participants were invited into a remote MS Teams
meeting where the team introduced the study and its goals. According to the dataset theme, it was decided that during
the study participants would be assigned the role of a Brand Manager employed at a soft drinks company that sells
products of the brand IdealCola.

A training session was conducted, allowing participants to experience the system, understand how its interface works
and address demo analysis tasks. Towards the end of the training session the participants were given time to ask any
questions that they had regarding the study. Once the training session was over a recorded version of the presentation
and system demonstration videos was sent to all participants so they could revisit the training material covered. After
the workshop, the team sent out emails to each individual participant including the URL to the platform, and personal
user credentials to access it. This served as a second training step, so that each participant could login during their
free time and practice an additional set of demonstration analysis tasks. This ensured that all participants were well
familiarized to the platform’s interface and analysis tools prior to engaging in the study. Moreover, it must be noted
when a participant logged in for the first time was greeted with a welcome presentation of slides that demonstrated
all the features of the data exploration system and also GDPR-related features (e.g., enabling a participant to request
the deletion of their information). This presentation of features was also made available later during the actual study
in case the participant wished to revisit it. Finally, since the study was conducted in a remote fashion, we needed to
cater for external participant distractions. Appropriate controls were developed to prevent the system from tracking
the user’s view time/performance in the cases where the participant was distracted. In particular, if the participant
was found to be non-responsive for 30 seconds the platform prompted the user to validate that they are still present,
otherwise the current progress and all recorded statistics were reset and the user had to restart the task. The 30-second
interval was decided with the industry partners after performing some tests with tasks of varying complexity.

The rest of the study was divided into two parts. The first part utilized the 19 non-adapted set of analysis tasks
(i.e., the system returned the same predefined data visualization for the specific analysis task to all participants). The
second part utilized the 19 adapted analysis tasks (i.e., the data visualizations were adapted by the adaptation engine,
according to the user model and task characteristics). Finally, once a participant was finished with a part, they also had
to complete the online questionnaires for assessing the system’s user experience and usability factors. For each part,
a participant could navigate in the list of available tasks (presented in random order), study their question/narrative
and select one that will serve as the current task. The participant could then navigate to the Analysis Wizard, which
is a visual analysis component enabling participants to perform data explorations. The functionality of the Analysis
wizard was limited to providing the capabilities required to address the study tasks. During the exploration process, the
participant was required to go through the three steps of the Analysis Wizard: (i) select analysis; (ii) select attributes;
and (iii) view result (i.e., adapted or non-adapted visualization). Furthermore, the current analysis task’s narrative was
available to users on the top of the Analysis Wizard to remind them of what is required. Finally, once the participant had
an answer for the analysis task, they could navigate back to the list of analysis tasks and provide their answer. During
the exploration process, the platform was monitoring the interaction time of participants for all steps and assessed the
correctness of their responses.
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6 EVALUATION RESULTS

The following sections summarize the effectiveness of the delivered adaptation by reporting the impact of data
visualization adaptation on the participant’s performance, accuracy, perceived user experience and system usability
factors as stated by the Hypotheses in Section 5.

6.1 Impact on Analysis Task Performance

The analysis of performance consisted of comparing the time required for participants to address paired (non-
personalized vs. personalized) analysis tasks. In the beginning, the results were filtered to include only pairs where the
participant responded accurately to both analysis tasks. An outlier analysis for assessing each participant’s and each
task’s response times to reveal abnormal observations. Our analysis revealed for Task 13, which featured computation
of a derived value, all participants took an extreme amount of time to complete the personalized task. After discussion
with participants, it was understood that the majority of the participants were not aware on how to approach the
analysis. Additionally, some participants reported having to use a calculator to find the correct answer. Consequently, it
was decided that the task results were removed from the analysis.

The analysis across the two study conditions revealed that adaptation had a positive effect on participants’ per-
formance enabling them to achieve an average decrease of 8.1 ± 6.9 seconds with regards to task completion time.
Moreover, with adaptation enabled, performance improved for an average of 9 ± 2 tasks per participant, while the
number of tasks improved in terms of performance at the unique participant level was at maximum 15 tasks and
at minimum 5 tasks. Additionally, with adaptation enabled, performance worsen for an average of 2 ± 1 tasks per
participant, while the number of tasks worsen in terms of performance at the unique participant level was at maximum
5 tasks and at minimum 0 tasks.

Analysis on the impact of adaptation with regards to performance across different task types shows that adaptation
had a positive effect on participants’ performance enabling them to achieve (i) a statistically significant average decrease
of 7.8 seconds for Retrieve Value tasks (p < .01), (ii) a statistically significant average decrease of 25.9 seconds for
Correlation tasks (p = .01), (iii) a statistically significant average decrease of 8.2 seconds on Simple Comparison tasks (p
< .01) and (iv) a non-statistically significant average decrease of 10.6 seconds on Compute Derived Value tasks (p = 0.24).
Since Simple Comparison tasks was the larger group of analysis tasks (10 task pairs), we decided to further explore this
group of tasks by independently analysing Simple Comparison tasks which used time series data. Results show that
with adaptation enabled, participants achieved (i) a statistically significant average decrease of 9.9 seconds on Simple
Comparison tasks which used time series data (p < .01) and (ii) a statistically significant average decrease of 4.5 seconds
on the remaining Simple Comparison tasks (p < .01). Moving on, with adaptation enabled performance improved for
an average of 84 ± 82 task responses across all analysis task types, while the number of task responses improved in
terms of performance at the unique analysis task type level was at maximum 199 responses for Simple Comparison
tasks which used time series data, and at minimum 5 responses for Compute Derived Value tasks. Finally, we report
that with adaptation enabled, performance worsen for an average of 22 ± 21 task responses across all analysis task
types, while the number of task responses that worsen in terms of performance at the unique analysis task type level
was at maximum 52 responses for Simple Comparison tasks which used time series data and at minimum 1 response
for Correlation and Compute Derived Value tasks. Unfortunately, the sample of our tasks was limited to a single Find
Anomaly pair of tasks, for which the majority of participants only responded correctly to the personalised variant of
the task, leaving a very small sample of only four responses that could not be incorporated in this analysis.
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In conclusion, the above results reveal that when the adaptation engine was enabled, participants’ performance was
positively affected and thus, we reject the null hypothesis H01.

6.2 Impact on Analysis Task Accuracy

The analysis of accuracy considered the participants’ ability to address (non-personalized vs. personalized) analysis
tasks correctly. For each of the study conditions a participant was able to achieve a maximum score of 19 (i.e., the total
number of tasks).

Analysing the accuracy scores of each participant reveals that 62% of participants weremore accurate when addressing
analysis tasks with adapted/personalised data visualizations. Moreover, 18% of participants were not affected in terms
of accuracy across the two study conditions, while the remaining 20% of participants were negatively impacted by
adaptation in terms of accuracy. In contrast to analysis tasks with no data visualization adaptation, participants were able
to address on average an additional 8% of analysis tasks correctly when working with tasks delivering data visualization
adaptation. Analysis of accuracy scores across task types for both conditions revealed that participants were generally
much more accurate in addressing tasks when adaptation was enabled for Simple Comparison, Compute Derived
Value and Find Anomaly tasks. Specifically, participants were more accurate by 6.6% for Simple Comparison tasks,
34.2% for Computer Derived Value tasks and 90% for Find Anomaly tasks. In contrast, for Correlation and Retrieve
Value task types we were not able to see a significant impact in terms of accuracy when participants were using
adapted/personalised data visualizations for addressing the analysis tasks.

In conclusions, the overall analysis of task accuracy revealed that when the adaptation engine was enabled, partici-
pants’ accuracy was positively affected and thus, we reject the null hypothesis H02.

6.3 Impact on User Experience and System Usability

During the evaluation study 35 participants responded to the User Experience Questionnaire (UEQ-S) [32] and the
System Usability Score (SUS) questionnaire [28], right after they addressed all control analysis tasks (i.e., those tasks with
a predefined/non-adapted data visualizations). Additionally, the same 35 participants responded to the two questionnaire
right after they had address all analysis tasks for which the system produced an adapted data visualization. The collected
data was analysed by an automated process offered by the questionnaire’s authors in order to investigate H03 and H04.

The User Experience Questionnaire has in total 8 scales, 4 scales measuring Pragmatic Quality (a metric that focuses
on the task-oriented nature of an experience e.g., considers the task’s efficiency and ease of use), and 4 scales measuring
Hedonic Quality (a metric that focuses more on the fun, appeal and more generally on the originality aspects of the
experience offered by a system). Using the responses of all participants we calculated Cronbach’s alpha (or coefficient
alpha) for each set of scales belonging to each metric (i.e., pragmatic quality and hedonic quality) for data collected
in both conditions (i.e., adaptation disabled/enabled). Alpha values for both metrics across the two conditions were
higher than 0.7 which is considered acceptable. Generally, scales that belong to the same group should show a high
correlation. Therefore, using the Cronbach’s alpha which is a measure for the consistence of a scale [8] helped us
ensure that the different scales of the questionnaire were interpreted as intended by the participants. The baseline
scores (i.e., adaptation disabled condition) for (i) pragmatic quality was 1.35, (ii) hedonic quality was 0.86 and (iii) the
overall user experience was 1.11. Moreover, with adaptation enabled the score for (i) pragmatic quality was increased
to 1.45, (ii) hedonic quality was increased to 0.97 and (iii) the overall user experience was increased to 1.21. The user
experience scores achieved by the system across the two conditions are above the value of 0.8 and thus are considered a
positive evaluation [32]. The adaptation engine evaluation revealed that enabling data visualization adaptation when
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participants interact with the given analysis tasks facilitated an increase of their perceived user experience and thus we
reject the null hypothesis H03.

The baseline score (i.e., adaptation disabled condition) for System Usability was 66.2 with a standard deviation of 12.9.
Moreover, with adaptation enabled the score for System Usability was increased to 67.4 with a standard deviation of 11.
The usability scores achieved by the system across the two conditions (i.e., adaptation disabled/enabled) are considered
marginally acceptable since a usability score is considered above average if it is higher than 68 [22]. Nonetheless, it is
interesting to see that the usability score was increased by 1.2 when participants were exposed to the tasks utilising the
adapted/personalised data visualizations. Another important aspect is that the standard deviation of the system usability
score for when the adaptation was enabled is lower than the standard deviation of the baseline system usability score. A
smaller standard deviation indicates that the average usability scores elicited from the participants’ responses are closer
to the mean and thus we are more confident for the higher system usability score achieved for the enabled adaptation
condition. The adaptation engine evaluation revealed that enabling data visualization adaptation when participants
interact with the given analysis tasks facilitated an increase of their perceived usability reaching to a marginal value
closer to that of the average score and thus we can reject the null hypothesis H04.

7 DISCUSSION

Our evaluation user study shows that the current adaptation engine and the adopted rule generation procedure improves
the participants’ performance and accuracy across a variety of data analysis tasks. Additionally, the platform positively
affects the participants’ perceived user experience and perceived system usability scores. Furthermore, the fuzzy
rule-based classification framework used by the adaptation engine enables the quickly integrate new rules based on
new data visualization interaction data. Additionally, the fuzzy adaptation logic and the ensemble processing approach
used by the adaptation engine makes it easier to combine and utilise in parallel multiple adaptation driving factors (e.g.,
human factors) which might interact with each other. Moreover, the extraction of data visualization interaction data for
adaptation rule generation, can take place during a user study using appropriate data collection tools, similar to the
ones used in this work, or can be be extracted from other sources, such as data analysis tools offering user interaction
logging. Overall, the flexibility of the current framework allows for quickly collecting interaction data and efficiently
transform it in adaptation rules. The framework is also open enough to be used for experimentation in other domains.

While our work committed to the improvement of the overall efficiency and effectiveness of the business data analyst
when addressing data analysis tasks, there are some limitations that we would like to address in the future. The sample
of analysis tasks used during evaluation was not balanced in terms of task type since more focus was given on simpler
comparison tasks. Moreover, this work assumes homogeneous weak learners adaptation rules. An alternative approach
would be to use a boosting framework by identifying which adaptations/interventions had the most influence on the
improvement in terms of accuracy and performance. Some questions rising from this work that we plan in addressing
as part of future endeavours includes: (i) How could our approach offer a transparent explanation to the business
analyst as with regards to why the best-fit data visualization was selected? (ii) How can we more effectively process the
resulting user’s interaction with the adapted output and further gain insight on which adaptation/intervention was
the most helpful for that type of user? and (iii) How does our adaptation perform with unexplored data visualizations
and analysis task types? Our goal is to attempt to address these questions by first extending our sample of users and
gathering more data visualization interaction data that can yield more diverse adaptation rules, thus, facilitating further
exploration of the interaction of human factors on data visualizations, but also the exploration of this interaction as a
driving force to the current adaptation engine.
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8 RELATEDWORK

Designing a user adaptive system involves the consideration of three questions; what to adapt to, when to adapt and how

to adapt [3]. Our work turns the focus on what to adapt to and further explores how to adapt aspects. With regards to
what to adapt to, research on information visualization reveals that individual differences influence how a user interacts,
understands and utilizes data visualizations for performing analytical tasks. In fact, the growing interest on the effect of
individual differences in information visualization resulted in comprehensive survey publications on the subject [19]. A
subset of works on individual differences and their effect on information visualization includes and is not limited to the
exploration of human factors such as cognitive abilities [4, 5, 17, 25, 29, 30, 33, 37], cognitive styles [16, 21, 26, 27, 31],
personality traits [7, 14, 36, 37], and expertise/experience [17, 18, 29].

The question of how to adapt data visualizations is usually addressed (i) at the visualization type level i.e., using
recommendations for a best fit data visualization, or (ii) at the individual visual element level i.e., applying modifications
to, or additions of visual elements on a data visualization.

For instance, the works of Gotz et al. [12] and Grawemeyer [13] focused on adaptation with regards to delivering data
visualization type recommendations based on user’s interaction behavior or task features. On the other hand, visual
element modifications are equally important to note. The work of Carenini et al. [3] investigated how the effectiveness of
a data visualization (specifically a bar chart) can be increased with four different adaptive interventions. Additionally, in
the context of Security Information and Event Management systems, Yelizarov et al. [35] proposed a graph of computer
hosts that highlights the most significant hosts (i.e., graph nodes) and dims (using opacity) the rest according to the
current cognitive load of the user for increasing efficiency when dealing with system threats. While Yelizarov et al. [35]
leveraged the user’s cognitive load for adaptation, others have utilised the underlying data for adapting the color of
visual elements according to their mapped data category in order to reduce the user’s cognitive load [24].

By contrast to the above works, our goal is to built a flexible human-centred by-design adaptation engine that
leverages the power of a multidimensional human-centered user model for delivering the best fit data visualization (both
in terms of data visualization type and visual element modifications). Specifically, our work targets data analyst users
that perform visual data exploration in the context of a business environment, aiming to increase their comprehensibility
of information leading to improved accuracy and time-to-action efficiency.

9 CONCLUSIONS AND FUTUREWORK

The adaptation engine evaluated in this paper adopts a fuzzy rule-based classification framework consisting of a fuzzy
rule generation procedure and a classification procedure which selects the best fit data visualization for a given user
performing a specific analysis task in two steps: (i) selecting the best data visualization type and (ii) the data visualization
element modifications to be applied. Through this paper we presented the architecture of the adaption engine, and also
the rule extraction process as this was performed using data visualization interaction data that was captured during a
user study.

The evaluation of the adaptation engine using realistic data and 45 business data analysts revealed that the majority
of participants were positively affected by the delivered data visualization adaptation in terms of their ability to correctly
address analysis tasks. Additionally, we found that data visualization adaptation enabled our participants to execute
their tasks significantly faster. This latter effect of performance improvement was more evident for simpler types of
analysis tasks (e.g., Simple Comparison and Retrieve Value tasks). Moreover, the results show that the perceived user
experience and system usability factors before and after adaptation was enabled were improved.
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In the future, we plan to apply the proposed framework to other industry domains, generating a larger sample of
more diverse adaptation rules which will further enable us to challenge our adaptation approach with more complex
data visualizations and adaptive interventions. We also aim to investigate additional factors that contribute to the
understandability and comprehension of data visualizations, such as transparency and explainability.
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